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Memory functions for mechanical relaxation in 
viscoelastic materials 

L. A. D I S S A D O ,  R. M. H ILL  
The Dielectrics Group, Department of Physics, King's College London (KQC), The Strand, 
London WC2R 2LS, UK 

The roles of memory functions for compliance retardation and modulus relaxation in viscoelas- 
tic materials are examined. It is shown that essential features of the mechanical responses are 
the components which occur instantaneously on the application of either a stress or a strain. 
Taking these features into consideration it is shown that at non-zero time the cooperative 
memory function of compliance retardation is the time differential of the modulus relaxation 
function and the cooperative memory function of modulus relaxation is the time differential of 
the compliance relaxation function for step up functions of stress and strain, respectively. Zero 
time singularities in the memory functions have been eliminated in the derivation of the redu- 
ced dynamical equations, whose memory functions are limited to non-singular contributions 
which are always present. 

1. In troduc t ion  
It has been shown [1] that when relaxation in a visco- 
elastic material is restricted to two elementary first- 
order processes the slower of these experiences a 
memory of  the faster when the processes are allowed 
to interact in a sequential manner. In this case the time 
scale of the memory of  the system extends into that of  
the slow response and modifies its relaxation rate 
without altering its Debye form. It has also been 
shown [2-4] that non-Debye spectral responses are 
obtained when relaxation is governed by a continuum 
or hierarchy of  sequential, cooperative processes rather 
than just two. Here we investigate the nature of  
memory in mechanical relaxation and show that for 
any practical viscoelastic system the memory function 
of the compliance response is related to the modulus 
relaxation function, and the memory function of  the 
response of the modulus is related to the compliance 
(creep) retardation function, regardless of whether 
the response is of  Debye or non-Debye form. Hence 
memory must exist on the time scales of the relaxation/ 
retardation of both compliance and modulus. 

The memory function for a single process of  relaxa- 
tion is correctly defined through the general Volterra 
equation of  the second kind 

d~(t) 
_ ft_~ Kj(t -- z) a(v) dr + 0th(t) + a(t) C 

dt 

(1) 

where we have considered relaxation in the strain, e(t), 
under the application of  a time dependent stress, a(t). 
Kj(t) is the compliance memory function, 0th(t) the 
coupling to the phonon bath and C a strain/stress 
coupling constant that requires to be determined from 
the specific experimental situation that is under consi- 
deration. The presence of  the thermal coupling term in 
the equation of motion, Equation 1, with the average 
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properties 

and 

(0th(t)) = 0 (2a) 

( 0 t h ( / )  0 th(gl )  ) OC a(t - -  t , )  ( 2 b )  

is a formal necessity for the correct description of 
thermal equilibrium [5]. Thus Equation 2b ensures 
that fluctuations about the average value of  e (i.e. 
(~(t))) exist, and use of Equation 2a shows that their 
average relaxation is governed by an equation of the 
form of  Equation 1 but with 0th(/) taken as zero. 

The average strain response to the driving force a(t) 
can now be determined. For examplel if we take a(t) 
to be a delta function of  magnitude a 0 at time zero, a 
one-sided Fourier transformation of the average strain 
gives the response c~(m) to an alternating stress, a 0 e i~' 
[6]. This can be obtained from the averaged form of 
Equation 1 as 

~(o) c 
- J ( o )  - - J o F ( o )  (3) 

ao Ks(o) + io 

and hence 

Kj(o) = C Jo l[F(o)]-' - io (4) 

In Equation 3, J (o) ,  which by definition is the com- 
pliance [7], has been expressed as a magnitude, the 
equilibrium compliance J0, multiplied by a normalized 
complex spectral shape function F(o) which goes to 
zero as the frequency becomes infinite and to unity as 
the frequency approaches zero. This convenient nota- 
tion, which follows that in [6], will be used through- 
out. Kj(o) is the one-sided Fourier transformation of 
Kj(t), that is the spectral response of  the compliance 
memory function. In principle, Kj(t) can be obtained 
from Ks(o) by inverse Fourier transformation of 
Equation 4, where the inverse transformation exists. 

On the other hand when o-(t) has the form of  a step 
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Figure 1 (a) Diagrammatic representation of the compliance retar- 
dation as a function of time. J~ is the "instantaneous" response, VJ(t) 
the unity normalized retardation function with J0 being the magni- 
tude of the time dependent response. The range of r is from zero 
to unity as the time develops from zero to infinity. (b) Diagrarmnatic 
representation of the modulus relaxation as a function of time. M~ 
is the "instantaneous" response, M0 the magnitude of the time 
dependent response and O(t) the relaxation function with O(t) being 
zero at time zero and unity at infinite time. Note that the relaxation 
is a decrease from a high "instantaneous" value to the equilibrium 
value M i -- M 0. 

function at zero time, i.e. a(t) = a02(t) with d2/dt = 
1 �9 6(t), the unit magnitude delta function, Fourier 
transformation of the macroscopically averaged 
Equation 1 gives 

aoC 
= ( 5 )  ico[Ks(co) + ico] 

Here ~(co) is the Fourier transformation of  the strain 
response c((t) to the step function stress, and sub- 
stitution for the compliance J(co) from Equation 3 
shows that ~(co) = (ico)-lj(co) a0. Thus, in this case 

Ida(O] 
J(co) = ao j FT L ~ -  j 

= J0 FT [~ (t)] (6) 

where ~(t) ~ ~0r is the average strain response to 
a step function stress, which is defined through the 
creep retardation function r [8] as indicated in 
Fig. la, and J0 = %/ao. The dot notation signifies 
differentiation with respect to time. 

The cases considered above show that the compli- 
ance may, correctly, be taken as the one-sided Fourier 
Transformation (FT) of  either the average strain in 
response to a delta function excitation, or the rate of  
relaxation of strain under unit step function stress 
excitation. An alternative approach to the memory 
function analysis (for example see [8 to 10]), is to 
consider the right-hand side of  Equation 1 to be given 
solely by an integral of  a memory function running 
from zero to t, i.e. 

d 
[a(t)/ao] = - fo Kj(t - r)[a(z)/a0] dr (7) 

dt 

The primed symbol is used here to differentiate between 
this form of memory function and that defined through 
Equation 1. From a one-sided Fourier transformation 
of Equation 7 we have 

icoF'(co) Kj(co) = (8a) 
1 - -  F ' ( c o )  

where F'(co) is the Fourier transform of the response 
a(t)/ao. It has been suggested [10] that F'(co) should be 
identified with the dynamic compliance function F(co) 

of  Equation 3. However, the dropping of the explicit 
source terms Orb(t) and a(t) on going from Equation 1 
to Equation 7 has introduced a serious ambiguity in 
the boundary conditions and it is not clear whether 
0((t) should be regarded as the response to a delta 
function, a step function, or to some other form of  
excitation. As we have already indicated the interpre- 
tation of FT[a(t)] in terms of the dynamic compliance 
depends on the form of the excitation, cf. Equations 3 
and 5, and thus the identification of F'(co) with F(co) 
is not a priori justifiable. In fact by noting that the 
response must be zero in the absence of  a source we 
can see that Equation 8a implies, erroneously, that the 
memory function is itself the source, i.e. 

[ico + Kj(co)] r '(co) = Kj (co) (8b) 

An equivalent Fourier transformation of  the homo- 
geneous portion of  Equation 1 gives 

[J(co)] ' C a(co) = [Kj(co) + ico] ~(co) = 0 (9) 

and shows that it is essential to include the source term 
if the compliance is to be obtained by Fourier trans- 
formation of  the equation of  motion for c((t). 

It  is unfortunate that the simpler but erroneous 
form of the Volterra equation appears to have been 
generally accepted. In part  this is due to a unique 
result for an exponentially decaying relaxation process. 
In this case Equation 1 requires that Kj(t) must have 
the form 

Kj(t) = cop 6(0 (10a) 

and 

Kj(co) = cop (10b) 

with a complete absence of memory on the time scale 
of  the relaxation, (cop)-1. Because F(co) now has the 
Debye form, (1 + i09/cop) 1 then Equation 4 gives the 
constant C as 

C = cop J0 = copJ(co = 0) (11) 

It  can be seen, from Equation 10, that the primitive 
form of  the Debye relaxation memory function allows 
the memory function defined by Equation 7 to recover 
the correct Debye behaviour, because now the apparent 
source term in Equation 8b has the required delta 
function form. This fortuitous result is, by definition, 
limited to an exponential time decay and in any other 
case Kj(t) will be significantly different from a delta 
function and hence F'(co) may not be identified with 
F(CO). 

Equation 10a shows that the description of non- 
Debye behaviour in terms of a parallel summation of 
discrete or continuous distributions of  Debye responses 
of  differing relaxation rates requires that the memory 
function takes the form of an equivalent summation 
or integration of zero time delta functions [1]. On 
the other hand, Equation 4 clearly shows that a non- 
Debye spectral function for F(co) will give a frequency 
dependent Ks(co) and hence a time dependence in the 
memory function at times other than zero. The latter 
implies that some memory of the preceeding steps 
must influence the course of  relaxation. I t  is our inten- 
tion here to discuss the formal interpretation of the 
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memory functions that can be determined, with com- 
plete generality, from the dynamic compliance and 
modulus expressions. 

In principle, it should be possible to develop a des- 
cription for the relaxation of the mechanical modulus 
which would be equivalent to that already contained 
within Equations 1 to 6 for the creep compliance. 
However, when one attempts to do so a fundamental 
difficulty arises because the modulus response to a step 
function excitation is a relaxation from a high instan- 
taneous value to a low equilibrium value, as indicated 
in Fig. lb. Essentially the zero time instantaneous 
response is an intrinsic part of  the relaxation which 
has been neglected in the creep compliance derivation. 
Using the notation in [6] the time dependence of the 
modulus can be expressed as 

M(t) = Mi2(t ) -- MoO(t) (12) 

where O(t) is the modulus relaxation function, M0 the 
magnitude of  the relaxation process, Mi the instan- 
taneous or zero time response of  the ratio of  the stress 
to the strain and 2(0 is, as before, the unit step func- 
tion. There can be no modulus relaxation without the 
instantaneous component. Fourier transformation of 
Equation 12 gives the frequency dependence of  the 
modulus response as 

M(o)) = M(oo) - MoG(o)) (13) 

with M(oe) the infinite frequency component, which is 
equivalent to the instantaneous response in the time 
domain, and G(o)) a second, unity scaled complex 
spectral function which also approaches units at low 
frequencies and zero at high frequencies [6]. As will 
be discussed later, the compliance and modulus func- 
tions of  frequency are reciprocals of  one another and 
hence the infinite frequency component of the modu- 
lus requires a finite high frequency response in the 
compliance which, in turn, necessitates the presence of 
an instantaneous component in the compliance in the 
time domain, indicated as J~ in Fig. la. It is this feature 
that has been neglected in the conventional approach 
to the memory response described through Equations 2 
to 6. In the following sections the memory functions of  
both compliance and modulus will be obtained, taking 
into consideration not only the principal retardation/ 
relaxation but the instantaneous responses as well. 
In the remainder of  the paper the consequences of 
memory in practical relaxing systems, that is those 
with both instantaneous and non-instantaneous com- 
ponents, will be considered and discussed. 

2. M e m o r y  f u n c t i o n s  
When the application of a strain/stress to a material 
results in more than one component of response, the 
Volterra equation, Equation 1, is unable to describe 
the system and requires to be replaced (after taking 
macroscopic averages) by the general expression 

d[~ j ( t ) l /d t  = - f[oo Z K j * ( t  - z )~ , ( r )  d r  4- a ( t ) C  
k 

(14) 

where KJj*(t) is the jkth element of  a mentory tensor 
and summation over thej th  component of the response 

is implied. If  it is assumed that the different compo- 
nents evolve independently, i.e. in parallel, then the 
memory tensor becomes diagonal and Equation 14 
reduces to 

d[~ j ( t ) l /d t  = - f[oo K J ( t  - z )~ j ( r )  d~ + a ( t ) C  

(15a) 

When K~(t) is a delta function the formalism of 
Equation 15a describes a distribution of independent 
components which each relax exponentially, i.e. a 
distribution of Debye relaxation elements. 

As outlined in Section 1, however, an intrinsic fea- 
ture of any mechanical relaxation is the presence of 
an "instantaneous" response in the stress/strain. This 
can be considered to arise from the initial dynamical 
behaviour (e.g. damped lattice vibrations, rapidly 
relaxing constraints) which eventually converts to 
the directly observable relaxation. Under these cir- 
cumstances the "instantaneous" and "observable" 
components of  the relaxation can be regarded as 
cooperative sequential elements of one complete pro- 
cess. The development of  this process can be described 
by means of a single element "cooperative" memory 
function 

x ~ ~j(z) dr + o(t)C (15b) 
J 

with the equivalent expression for the modulus 
"cooperative" memory function K M (t) being obtained 
by replacing c~j(t) with aj(t) and vice versa. Here the 
sum in j  runs only over the "instantaneous" response, 
denoted by subscript i, and an "observable" compli- 
ance increment of magnitude J0, such that the strain 
response to a step-up stress excitation of  magnitude, 
o0, is 

J(t) = ~ ~j(t)/Oo = Ji2(t) + Jo~(t) (16) 
J 

Because the "instantaneous" response, Ji, takes place 
on an extremely fast time scale relative to that of the 
"observable" increment, we have taken it to occur at 
time zero and represented it through a step-up func- 
tion 2(0. The time scale of the observable increment 
itself is defined via its unity-scaled time-dependent 
retardation function, O(t). 

Formal relationships between the "cooperative" 
memory functions, Kj(o)) and KM(O)), and the spectral 
functions F(o)) and G(e~) can be obtained by Fourier 
transforming Equation 15b for a delta function source 
(a(t) or e(t)), because in this case the strain/stress 
response is the dynamic compliance/modulus. The 
constant C is obtained through the equilibrium (static) 
compliance/modulus as 

Cs = [J0 4- J(oo)]Ks, o (17a) 

and 

CM = [M(oo) - M0]KM. 0 (lYb) 

where Kj. 0 and KM.0 are the zero frequency limits of 
Ks(o)) and KM(O)), respectively. The generalization of  
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Equation 4, defining the spectral response of the com- 
pliance memory function, is thus given by 

J0 + J ( ~ )  
Kg(oJ) = Kg, o JoF(~o) + J ( ~ )  --  ioJ (18) 

with the frequency dependence of the compliance being 
related to the strain response to a step-up excitation 
through 

JoF(eo) + J ( ~ )  = FT[dg( t ) /d t ]  

= FT[J0~(t) + Jib(t)] (19) 

In an exactly similar manner the memory function 
for the modulus relaxation can be derived in the form 

M ( ~ )  -- M 0 -- ico (20) 
KM(CO) = KM,O M ( o o )  --  MoG(co)  

and because M0 is required to be less than M(oo) 
no difficulties arise from the sign of the frequency- 
dependent term. We also have that the response of  the 
modulus after step function excitation in strain is 

M ( o o )  - -  MoG(eo)  = F T [ d M ( t ) / d t ]  

= FT[Mi2(t) -- MoO(t)] (21) 

Inverse transformations of  Equations 18 and 20 
give the required time domain response of  the memory 
functions of  compliance retardation and modulus 
relaxation. The difficulties that can be experienced in 
carrying out the inverse transformations lie not with 
the (i~o) terms, whose transformation is the differential 
of the unit delta function [dr( t ) /d t  = 3 (t)], but with 
the inversion of  the reciprocal of the spectral functions 
and the high-frequency component. 

3. Compliance-modulus relationships 
The problems associated with the spectral function 
reciprocals in Equations 18 and 20 can be removed by 
utilizing the relationship between dynamic modulus 
and compliance determined through a consideration 
of the stress and strain under sinusoidal excitation 
[8, 9, 11] to be 

[JoF(co) + J (oo) ] [M(~)  -- MoG(~o)] = 1 (22a) 

which contains, as special cases at zero and infinite 
frequencies 

[J0 + J (co) [M(~)  - M0] = 1 (22b) 

and 

J ( ~ )  M ( ~ )  = 1 (22c) 

By means of these relationships and Equation 18 we 
get 

M ( ~ )  - MoG(co)  
Kj(OJ) = Ks, o M ( ~ )  --  Mo --  ico (23) 

= Kj.o7 -1 - ic9 --  Kj,07-1(I -- 7) G(co) 

(24) 

with 7 = J ( ~ ) / [ J o  + J(oo)]. After inverse trans- 
formation we then have 

K j ( t )  = Kj.oT-13(t)  --  1.3(0 - Ks, o7 1(1 -- y)0(t) 

(25) 

as the memory function of compliance (creep) retarda- 
tion. The equivalent expressions for the frequency 
dependence of the modulus, from Equation 20, are 

JoF(oo) + J ( ~ )  _ ioJ (26) 
KM(CO) = KM.O Jo + S(oo)  

= KM, OY --  ioJ + KM,0(I -- y)F(oJ) (27) 

and hence 

KM(t)  = Kg,  oy f ( t )  -- 1.3(0 + Kg,0(1 -- y)~(t) 

(28) 

is the memory function of  modulus relaxation. 
Equations 25 and 28 are general expressions for 

the memory functions of mechanical response. They 
show that the creep compliance and the modulus are 
related not only in the frequency domain, through 
Equation 22a, but are also directly related in the 
time domain through their memory functions. This 
inter-relationship can be made more explicit by sub- 
stituting for K j ( t )  and KM(t)  in Equation 15b and its 
modulus equivalent to obtain 

J J 

(29a) 

and 

J 
RM(t -- ~) ~ ~j(~) a~ + cM~(O 

J 

(29b) 

In these reduced dynamic equations the "instantaneous" 
response acts as the source for the time development 
of  the system, with 

Cs = J(oo) (30a) 

and 

(~M = M(oo) (30b) 

The reduced memory functions now relate the response 
to the time development of  the "observable" incre- 
ment of the conjugate variable, i.e. 

K j ( t )  = [ M o / M ( ~ ) ] O ( t )  (31a) 

and 

K g ( t )  = [-- Jo/J(oo)](J( t )  (31b) 

with Fourier transformation of  Equations 29a and 
29b leading directly to the reciprocal relationship 
of Equation 22a when the source term has fi 6(t) 

behaviour. 
It should be noted that the interpretation of  the 

reduced memory functions in terms of the observable 
quantities depends upon the type of  excitation source 
used for measurement. Thus ~;j(t) is determined by 
either the observable stress response to delta function 
excitation or the observable stress relaxation rate for 
step-up excitation, with the appropriate conjugate 
variables applying for/fM (t). 

4. The Debye response 
The expressions derived for the "cooperative" memory 
functions in the previous section are quite general and 
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do not depend on any specific form for the spectral 
functions F(~o) and G (co). In particular they imply that 
even when the "observable" response has a Debye form 
an allowance for the "instantaneous" component 
causes the memory function to extend into the relaxa- 
tion time range, in contrast to its zero time delta 
function, 5(t), behaviour for an isolated process. 

For  a Debye response the relaxation is exponen- 
tial and thus we may take exp ( - c%t )  for r and 
(1 + ig0/COp) -I for F(oJ). Because [6] 

{JoF(~o) + J(oo)} ' 

= [1 + i~o/c%][J o + J(oo) + iJooj/~Op] ' 

= M(oo) M0[l + ie)/COM,p] l (32) 

with 

COM,p = [J0 + J(oo)][J(oo)]-le)v = ~ ~cop (33) 

O(t) is also exponentially decaying with a relaxation 
time 7e)~ ~ . The relationship between the cooperative 
memory function and the relaxation of the conjugate 
variable contained in Equations 25 and 28 can be 
confirmed directly in this case because inversion of  
Equations 18 and 20 is possible and yields 

Kj(t) = --Kj.0~OpT-2(l - 7) exp(-COp? - i t )  

q'- Kj, o? I•(t) - -  3(t) (34a) 

and 

KM(t) = Kg,0~%(1 -- 7) exp (--~%t) 

+ KM.O75(t) -- 3 (0  (34b) 

The identification of the modulus relaxation function 

~op7 -~ exp(-c%7-~t)  = O(t) (35a) 

and the creep retardation function 

~p exp( -c%t )  = ~(t) (35b) 

gives Kj(t) and KM(t ) in the form of  Equations 25 
and 28. Thus when the "observable" compliance 
response has the Debye form its memory function 
extends exponentially into the relaxation region with 
the time scale 7O~p ~ appropriate to the similarly expo- 
nential modulus relaxation. Equivalently the modulus 
memory function follows the exponentially relaxing 
compliance at times greater than zero. 

5. Discussion 
In the previous sections we have shown that when 
more than one step is sequentially involved in the 
complete mechanical relaxation of a viscoelastic sys- 
tem one part of the memory extends over the whole 
time scale of the relaxation. This result applies even 
when the slowest mechanical component relaxes expo- 
nentially, in contrast to the situation applying when 
the different components relax independently, for 
which the memory functions need be non-zero only at 
time zero. We have also argued that sequential relaxa- 
tion is the natural behaviour, with fast inertial (and 
constraint relaxing) motions being essential for a 
centre to enter its relaxation coordinate. These motions 
have been denoted as the "instantaneous" and 
"observable" responses, and it has been shown that 

~ ~  ~ ~  
Ji + Joe {t) I / Mi -M~ (t} I 

41 41 
Fourier Transform Fourier Transform 

lk IV 

11 Inversion '11 
Figure 2 Schematic representation of the compliance/modulus 
retardation/relaxation functions and their inter-relationships. The 
symbols are defined in the text. 

the memory function at non-zero time for the response 
is determined by the "observable" relaxation of its 
conjugate variable. The relationships that ensue 
between spectral and memory functions for the com- 
pliance and modulus are summarized in Fig. 2, and 
mean that the determination of any one of  four quan- 
tities, as a function of frequency or time, is sufficient 
to determine all the others. 

Elimination of the singular parts of  the memory 
functions, Equations 25 and 28, has resulted in the 
reduced Equations 29 which have simple interpreta- 
tion. Here the "instantaneous" response drives the 
dynamical behaviour of  the system. In the first place 
the magnitude of the source term is rescaled to that 
of  the "instantaneous" component. Secondly the 
"instantaneous" component of one response variable 
acts as a step-up source for its conjugate whose slow 
("observable") relaxation determines the time depen- 
dence of  the response through the reduced memory 
functions, Equations 31 a and 3 lb. This latter feature 
implies that the "instantaneous" release of stress/strain 
at a centre drives the further slow relaxation of  the 
centre. 

The relationships derived here in Equations 25 
and 28 are independent of  the form of the relaxation 
functions r and O(t), and thus apply equally well to 
non-exponential as to exponential relaxation. Thus if 
the relaxation is non-exponential the non-singular 
part of its memory function is also non-exponential, 
just as both are exponential in the case of  the Debye 
response considered in Section 4. Furthermore the 
similarity in form between Kj(t)/KM(t) and the delta 
function responses J(t)/M(t), Equations 19 and 21, 
allow us to conjecture that if the memory functions are 
themselves considered to be dynamic variables in 
the spirit of  reference [12] then all functions in 
the embedded hierarchy of  equations of  motion 
will be either exponential (Debye response) or non- 
exponential (non-Debye response). If this is the case 
then it implies that no arbitrary truncation of the Mori 
series, which will necessarily lead to exponential behav- 
iour for the preceeding response function, can success- 
fully describe non-exponential response functions. 
However, those theoretical approaches which derive 
non-exponential relaxation, other than the elementary 
distribution of relaxation times concept, are all based 
on a formally infinite hierarchical sequence of pro- 
cesses [13] and therefore avoid arbitrary truncation of 
the embedded response functions. 
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6, Conclusions 
It has been shown that when describing mechanical 
relaxation by means of equations of motion with a 
memory function a proper account of the initial 
(boundary) conditions is of paramount importance. 
When due allowance is made for an "instantaneous" 
component in a sequential relaxation mechanism it 
has been shown that the memory function always 
extends into the time scale of the relaxation, and 
relationships have been derived between the memory 
function of the response and the relaxation of the 
conjugate variable. Elimination of  singularities in 
the memory functions can be achieved resulting in 
a reduced dynamical equation for which the origin 
of the response is seen to be the "instantaneous" 
component of the relaxation itself. 
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